KINETIKA REAKSI PEMBAKARAN ENERGI ALTERNATIF BIOGAS

Hangga Wicaksono, Hilmi Iman F., M. Fakhruddin, Bayu Pranoto Politeknik Negeri Malang Email: wicaksonohangga@polinema.ac.id

A. Pendahuluan

Pembakaran adalah teknologi konversi energi yang paling banyak dipakai dewasa ini. Besarnya energi yang dapat dibangkitkan dalam waktu yang relatif singkat membuat teknologi pembakaran sulit tergantikan. Berbagai macam aplikasi pembangkit energi dan aplikasi kebutuhan sehari-hari seperti PLTU, PLTG, alat transportasi, dan keperluan memasak masih menggunakan pembakaran. Sedangkan jumlah ketersediaan bahan bakar fosil di alam terbatas dan untuk dapat menghasilkannya lagi diperlukan waktu yang sangat lama. Sumber energi alternatif saat ini dikembangkan sebagai pengganti bahan bakar fosil.

Biogas adalah energi alternatif yang dihasilkan dari proses reaksi anaerobic disgestion yang dilakukan oleh bakteri methanogen dengan sampah organik untuk menghasilkan metana (CH4). Sampah organik ini dapat bersumber dari kotoran hewan, kotoran manusia, atau hasil proses lain yang sumber energi asalnya dari fotosintesis tanaman. Proses anaerobic disgestion yang dilakukan oleh bakteri methanogen tidak hanya menghasilkan CH4 pada reaktor penghasil biogas konvensional. Komposisi dari biogas yang dihasilkan pada reaktor konvensional meliputi CH4 (50%-70%), CO2 (30%-40%), H2O (0%-10%), H2S (0,3%), N2 (<2%), H2 (<1%) dan gasgas lainnya (Teodorita, 2008). Keberadaan karbon dioksida (CO2) pada proses pembakaran sejatinya merupakan produk hasil pembakaran. Tingginya kandungan CO2 berpotensi membuat proses pembakaran menjadi tidak efisien. Hal ini dikarenakan CO2 memiliki nilai kalor spesifik yang tinggi sehingga akan menyebabkan CO2 menyerap sebagian kalor yang dihasilkan pada proses pembakaran. Oleh karena itu temperatur yang dihasilkan pada proses pembakaran yang mengandung CO2 sebagai reaktan memiliki besar temperatur yang lebih rendah.

No	Komponen	Simbol	Komposisi
		Kimia	
1	Metana	CH_4	50-70 %
2	Karbon dioksida	CO ₂	30-40%
3	Uap air	H ₂ O	0%(20°C)-10%
			(40° C)
4	Oksigen	O2	<2%
5	Nitrogen	N_2	<2%
6	Amonia	NH3	<1%
7	Hidrogen	H_2	<1%
8	Hidrogen sulfida	H ₂ S	<1%

Tabel 1 Komposisi kimiawi Biogas

Sumber : AS. Teodorita dan R. Dominik, 2008

Salah satu upaya untuk meningkatkan efisiensi pembakaran biogas yang tidak dimurnikan sebelumnya adalah dengan menambahkan banyak oksidator yang tersedia. Dengan adanya kelebihan oksidator diharapkan kandungan bahan bakar terbakar secara menyeluruh tanpa ada sisa bahan bakar yang tidak terbakar. Akan tetapi penambahan oksidator yang terlalu berlebihan juga akan berefek mendinginkan temperatur dari hasil pembakaran. Selain itu semakin besarnya laju aliran massa dari reaktan beresiko menimbulkan terjadinya *blow off* pada pembakaran.

Pada aplikasi pembakaran modern keberadaan CO₂ sebagai gas yang terkandung dalam reaktan merupakan hal yang disengaja. Pada pembakaran menggunakan syngas diperlukan sebuah diluent untuk menurunkan resiko terjadinya ledakan. Penggunaan CO₂ sebagai zat tambahan mengakibatkan kecepatan rambat api maksimum bergeser pada nilai *equivalence ratio* yang lebih tinggi yakni pada kondisi yang lebih *lean-fuel* (Lapalme, 2013). Pada pengamatan *bunsen* burner, seiring semakin meningkatnya kadar CO₂ mengakibatkan penurunan kecepatan rambat api. Resiko terjadinya padamnya api akibat *blow off* yang terjadi ketika kecepatan aliran reaktan lebih tinggi daripada kecepatan rambat api, akan semakin besar. Hal ini berdampak pula pada konsumsi bahan bakar rata-rata yang semakin kecil jika dibandingkan dengan tidak adanya CO₂ pada pembakaran CH₄ (Cohe, 2009). Dengan penurunan kecepatan rambat api, maka besar resiko terjadinya ledakan pada tabung *reservoir* dapat terminimalisir (Janes, 2011). Persentase CO₂ lebih dari 47.7% pada pembakaran CH₄ dengan udara pada *micro combustor* akan menyebabkan api tidak dapat menyala. Akan tetapi seiring dengan bertambahnya persentase CO₂ menyebabkan zona bereaksi api yang lebih luas (Bagheri, 2013).

Semakin rendahnya temperatur yang dihasilkan pada proses pembakaran berpotensi memperkecil produksi NO_x yang merupakan gas berbahaya. Meskipun demikian, dengan adanya CO₂ pada sisi reaktan akan meningkatkan resiko terjadinya pembentukan gas *carbon monoxide* (CO) yang juga berbahaya bagi kesehatan. Tingginya kadar emisi gas CO pada dasarnya merupakan penurunan efisiensi dikarenakan untuk menghasilkan daya yang sama membutuhkan lebih banyak lagi bahan bakar (Amato, 2010).

Dalam suatu proses pembakaran bahan bakar terjadi berbagai rantai reaksi kimia. Dengan menggunakan database kinetika reaksi dan aplikasi pengolah metode numeris, berbagai informasi mengenai kinetika reaksi dapat diprediksi. Simulasi numeris merupakan salah satu solusi untuk memecahkan masalah pembakaran. Dengan semakin banyaknya penelitian eksperimental terdahulu yang dapat digunakan sebagai acuan, membuat simulasi numeris saat ini menjadi semakin robust dan hasil dari perhitungannya semakin akurat. Perkembangan teknologi di bidang komputerisasi juga turut menunjang penelitian berbasis simulasi numeris menjadi lebih mudah. Simulasi numeris secara umum dapat menyediakan hasil analisa yang dapat dipertimbangkan dalam waktu yang relatif cepat dan biaya yang jauh lebih terjangkau apabila dibandingkan dengan penelitian berbasis eksperimental. Sehingga hasil dari perhitungan secara numeris dapat dijadikan acuan dalam proses pengkondisian campuran bahan bakar dan oksidator. Pada artikel ini dibahas mengenai reaksi-reaksi yang berpengaruh dalam pembentukan gas buang pada pembakaran biogas dengan oksidator udara. Komputasi dilakukan dengan menggunakan bantuan dari program Cantera 2.2.1 (Goodwin D.G., 2004). Cantera merupakan sebuah kumpulan paket perintahperintah pemrograman berbasis objek yang didistribusikan secara open source. Dibuat pertama kali oleh David Goodwin di Laboratorium Nasional Sundial Amerika Serikat dan masih banyak

dikembangkan sampai saat ini. Mekanisme pembakaran gas alam GRI-Mech 30 (Smith et al., 1999) digunakan pada artikel ini. Di mana pada mekanisme ini terdapat data reaksi kimia dan laju konstanta pada pembakaran gas alam. Mekanisme ini terdiri dari 325 reaksi dan 53 spesies yang didapat dari analisa eksperimental

B. Analisis 1D Konfigurasi Premiks Counterflow Burner

Ditinjau dari tipenya terdapat dua jenis pembakaran yakni pembakaran premiks dan difusi. Perbedaan antara keduanya adalah sebagai berikut :

- 1. Pada nyala api premiks antara oksidator dan bahan bakar dicampur secara mekanis terlebih dahulu sebelum terjadi reaksi pembakaran. Hal ini menyebabkan rasio antara bahan bakar dan oksidator dapat diatur sedemikian rupa untuk mendapatkan hasil yang diinginkan. Beberapa contoh aplikasi yang menggunakan api premiks adalah *bunsen burner* dan mesin pembakaran *otto*.
- 2. Pada nyala api difusi tidak ada pencampuran oksidator dan bahan bakar sebelum terjadinya reaksi pembakaran. Oksigen dan bahan bakar bercampur secara alamiah (difusi). Difusivitas bahan bakar terhadap oksidator memegang peranan yang sangat penting dalam mempertahankan kestabilan api difusi. Beberapa contoh aplikasi yang menggunakan api difusi adalah nyala api lilin, pembakaran motor diesel dan mesin turbin gas.

Dikarenakan adanya pencampuran oksidator dan bahan bakar sebelum terjadi pembakaran, nyala api premiks akan cenderung bergerak dengan kecepatan tertentu mengarah ke sumber reaktan. Gelombang perambatan nyala api akan stabil pada titik tertentu ketika kecepatan aliran reaktan sama dengan kecepatan rambat api. Reaksi pembakaran terbentuk pada daerah nyala api. Sedangkan zona di belakang nyala api terdapat produk hasil pembakaran.

Gambar 2. Pembakaran Premiks Sumber: Wardana (2008: 149)

Karakteristik nyala api premiks sejatinya memiliki bentuk pipih seperti yang terlihat pada gambar 2. Berdasarkan hal tersebut observasi pada nyala api premiks dapat disederhanakan menjadi analisis 1 Dimensi untuk memudahkan proses diskritisasi persamaan-persamaan pada analisis secara numeris.

Gambar 3. Skema pembakaran counterflow premixed flame

Sesuai pada skema gambar 3, campuran bahan bakar dan oksidator dialirkan dari kedua ujung mulut pipa *counterflow* dengan komposisi yang identik..

Garis berwarna kuning mewakili titik stagnasi, letak dari kedua aliran identik berlawanan tersebut bertemu. Akan ada 2 nyala api yang sama pada masing-masing aliran. Dikarenakan adanya homogenitas pada kedua aliran tersebut dan juga penampang aliran yang berbentuk lingkaran maka analisa 1 Dimensi dapat dilakukan.

Gambar 4. Daerah analisis 1D premiks counterflow burner

Analisis 1D hanya dilakukan pada salah satu sisi aliran berlawanan arah. Terdapat dua buah koordinat yakni koordinat r (radial) dan koordinat z (aksial). Di mana pada saat perhitungan dilakukan sebuah perekayasaan sehingga semua parameter yang ada hanya dipengaruhi oleh koordinat z. Seperti yang terlihat pada gambar 4 pada setiap perhitungan akan dihasilkan nilai dari parameter pembakaran seperti fraksi massa spesies (X), temperatur, kecepatan aksial (u) dan kecepatan radial (v). Parameter-parameter tersebut dihitung pada setiap node sepanjang lintasan aliran arah koordinat z (dimulai dari mulut nozzle sampai dengan titik stagnasi. Jumlah node pada setiap perhitungan berbeda-beda bergantung pada jumlah reaksi yang terjadi dari campuran yang disediakan.

Untuk mengurangi efek negatif adanya CO₂ pada pembakaran biogas, salah satu bentuk upaya yang lazim dilakukan adalah dengan menambahkan jumlah oksidator. Akan tetapi nilai kelebihan udara yang terlalu tinggi juga berdampak buruk bagi pembakaran. Nilai kelebihan udara yang tinggi menurunkan derajat temperatur pembakaran. Pembakaran paling efektif terjadi ketika kondisi campuran stoikiometri di mana dapat dihasilkan nilai temperatur tertingggi. Tingginya temperatur hasil pembakaran berpotensi menimbulkan gas NO_x yang berbahaya.

C. Pembentukan spesies berbahaya NOx (NO2 dan NO) pada pembakaran biogas

Pengaruh adanya CO₂ terhadap pembentukan spesies berbahaya NOx (NO₂ dan NO) ditinjau pada keseluruhan variasi rasio ekuivalen. Data yang diambil merupakan fraksi massa dari spesies NO dan NO₂ pada koordinat titik z terakhir (titik terakhir pembakaran). Sehingga hasilnya dapat dilihat pada gambar berikut ini :

Gambar 5. Fraksi massa spesies NO hasil pembakaran reaktan CH4/CO2/udara

Spesies NO dapat terbentuk ketika pembakaran mencapai temperatur yang cukup tinggi dan tersedia spesies O₂ yang tidak terbakar untuk berpasangan. Tampak pada Gambar 5.11 fraksi massa spesies NO tertinggi sebesar 3.059 x10⁻³ berada pada variasi rasio ekuivalen 0.85 dan penambahan CO₂ 0%. Penurunan nilai fraksi massa spesies NO terjadi pada rasio ekuivalen yang lebih kecil maupun lebih besar. Pada daerah pembakaran campuran kaya bahan bakar, tidak terdapat pembentukan spesies NO. Hal ini disebabkan ketiadaan supplai spesies O₂ untuk berpasangan dikarenakan spesies O₂ pada rasio ekuivalen ini habis bereaksi dengan bahan bakar. Penurunan nilai fraksi massa NO pada daerah pembakaran campuran miskin bahan bakar lebih dikarenakan oleh bereaksinya sebagian spesies NO untuk menjadi spesies NO₂. Efek penambahan CO₂ bersifat menurunkan pembentukan spesies NO. Hal ini terlihat pada Gambar 5.11 bahwa pada setiap penambahan

CO₂ terdapat penurunan fraksi massa spesies NO dengan penurunan terbesar pada kondisi rasio ekuivalen 0.85. Spesies NO secara umum dapat terbentuk dari empat reaksi berikut ini

$$NO + N \leftrightarrow N_2 + O$$
$$N + O_2 \leftrightarrow NO + O$$
$$N + CO_2 \leftrightarrow NO + CO$$
$$N + OH \leftrightarrow NO + H$$

Untuk dapat mengetahui sebab turunnya pembentukan spesies NO pada setiap penambahan CO₂, sebuah analisis lebih lanjut dilakukan pada rasio ekuivalen 0.85. Analisis dilakukan dengan menggambarkan laju pelepasan kalor pada keempat reaksi tersebut di setiap titik koordinat z.

(a) Reaksi NO + N \leftrightarrow N₂ + O

(b) Reaksi N + $O_2 \leftrightarrow NO + O$

(c) Reaksi N + OH \leftrightarrow NO + H

(d) Reaksi N + CO₂ \leftrightarrow NO + CO

Gambar 6(a) menunjukkan laju pelepasan kalor dari reaksi NO + N \leftrightarrow N₂ + O pada setiap koordinat z. Terlihat bahwa reaksi 178 memiliki laju pelepasan kalor terbesar 2026.3 W/m³ pada penambahan CO₂ 0%. Laju pelepasan kalor yang bernilai positif menunjukkan terdapatnya penyerapan kalor dikarenakan proses disosiasi N₂. Tidak seperti ketiga reaksi yang lain, reaksi NO + N \leftrightarrow N₂ + O berlangsung hampir pada setiap koordinat z. Terdapat penurunan nilai puncak reaksi ini sebesar 234.34 W/m³ antara penambahan CO₂ 0% dengan penambahan CO₂ 40% . Reaksi ini memiliki energi aktivasi yang tinggi yakni 318 kJ/mol dikarenakan oleh ikatan rangkap tiga dari molekul N₂ (Li, 2010). Sehingga dengan adanya efek penurunan temperatur akibat penambahan CO₂, jumlah asupan kalor yang dapat digunakan untuk reaksi ini berlangsung menjadi semakin berkurang.

Reaksi N + O₂ \leftrightarrow NO + O dan reaksi N + OH \leftrightarrow NO + H memiliki kecenderungan yang sama yakni terdapat penurunan pada setiap penambahan CO₂. Kedua reaksi ini melepaskan kalor yang ditandai dengan laju pelepasan kalor yang bernilai negatif. Laju pelepasan kalor terbesar reaksi N + O₂ \leftrightarrow NO + O bernilai -10331 W/m³, sedangkan pada reaksi N + OH \leftrightarrow NO + H bernilai -12637 W/m³. Selisih antara nilai laju pelepasan kalor tanpa penambahan CO₂ dengan penambahan CO₂ 40% pada reaksi N + O₂ \leftrightarrow NO + O sebesar 1489.5 W/m³ sedangkan pada reaksi N + OH \leftrightarrow NO + H sebesar 2223.5 W/m³. Meskipun memiliki nilai yang sangat besar, terjadinya kedua reaksi ini hanya berada pada kisaran koordinat z yang cukup sempit. Reaksi N + CO₂ \leftrightarrow NO + CO memiliki nilai laju pelepasan kalor sebesar -463.92 W/m³ yang terjadi pada penambahan CO₂ 40%. Terdapat kenaikan laju pelepasan kalor pada penambahan CO₂ 40% dibandingkan dengan tanpa penambahan CO₂ sebesar 100.6 W/m³. Berbeda dengan ketiga reaksi sebelumnya, laju pelepasan kalor reaksi N + CO₂ \leftrightarrow NO + CO semakin besar seiring dengan bertambahnya CO₂. Hal ini dikarenakan spesies CO₂ merupakan salah satu spesies reaktan yang diperlukan untuk reaksi ini berlangsung.

Dari keempat reaksi pembentuk N₂, tiga dari reaksi-reaksi tersebut mengalami penurunan pada setiap penambahan CO₂. Hanya reaksi N + CO₂ \leftrightarrow NO + CO yang mengalami kenaikan seiring dengan penambahan CO₂. Meskipun begitu, jumlah kenaikan yang dialami oleh reaksi N + CO₂ \leftrightarrow NO + CO tidak terlalu signifikan jika dibandingkan dengan penurunan pada ketiga reaksi lainnya. Sehingga dari analisis ini dapat disimpulkan bahwa penambahan CO₂ dapat mengurangi pembentukan spesies NO yang ditandai dengan adanya penurunan laju pelepasan kalor pada beberapa reaksi pembentuk spesies NO

Gambar 7. Fraksi massa spesies NO2 hasil pembakaran reaktan CH4/CO2/udara

Terlihat pada Gambar 7 spesies NO2 terbentuk ketika rasio ekuivalen kurang dari 1. Meskipun temperatur tertinggi berada pada daerah rasio ekuivalen mendekati 1 seperti pada Gambar 5.9, spesies NO₂ semakin sedikit terbentuk dikarenakan ketersediaan spesies O₂ menipis dikarenakan telah bereaksi dengan spesies bahan bakar. Pada daerah pembakaran campuran kaya bahan bakar tidak terdapat spesies NO₂ yang terbentuk. Fraksi massa NO₂ terbesar yakni 3.07 x 10⁻⁶ % berada pada rasio ekuivalen 0.62 di mana temperatur maksimum di titik ini adalah 1702.2 K. Pada rasio ekuivalen 0.56 dan 0.5 terjadi penurunan fraksi massa NO₂ hal ini disebabkan temperatur maksimum yang dibangkitkan pada rasio ekuivalen ini semakin menurun yakni 1588.6 K dan 1486 K. Berikut ini reaksi yang menghasilkan spesies NO₂

 $NO + HO_2 \leftrightarrow NO_2 + OH$

Untuk mengetahui pengaruh penambahan CO₂ terhadap reaksi tersebut, maka dilakukan pengambilan data laju pelepasan kalor pada rasio ekuivalen 0.62. Analisis dilakukan pada setiap penambahan CO₂.

Gambar 8. Laju pelepasan kalor reaksi NO + HO₂ ↔ NO₂ + OH pada rasio ekuivalen 0.62 di setiap titik koordinat z

Tampak pada Gambar 8 reaksi NO + HO₂ \leftrightarrow NO₂ + OH bersifat melepaskan kalor di mana laju pelepasan kalor tertinggi bernilai -3605.09 W/m³ pada variasi tanpa penambahan CO₂. Seiring dengan ditambahkannya CO₂, laju pelepasan kalor terus menurun hingga mencapai -2509 W/m³ pada penambahan CO₂ 40%. Dari persamaan reaksi ini dapat diketahui bahwa pembentukan spesies NO₂ sangat bergantung pada ketersediaan spesies NO. Sehingga reaksi 178 secara garis besar berperan signifikan dalam pembentukan keseluruhan spesies berbahaya NOx (Warnatz, J et al. 2006).

D. Pembentukan spesies berbahaya CO pada pembakaran biogas

Kandungan spesies berbahaya lain yang menjadi fokus dalam penelitian ini adalah spesies CO. Spesies CO merupakan hasil dari pembakaran tidak sempurna spesies CH4 dikarenakan tidak mencukupinya ketersediaan spesies O2 dalam campuran reaktan

Gambar 9. Fraksi massa spesies CO hasil pembakaran premiks counterflow reaktan CH4/CO2/udara

Tampak pada Gambar 9 kecenderungan fraksi massa spesies CO yang terbentuk semakin banyak seiring dengan semakin besarnya rasio ekuivalen. Spesies CO mulai terbentuk pada rasio ekuivalen 0.85 yakni dengan besar nilai fraksi massa 0.1%. Fraksi massa CO terbesar berada pada rasio ekuivalen 1.68 dan penambahan CO₂ 40% yakni dengan nilai 11.4%. Pengaruh penambahan CO₂ mulai terlihat pada variasi rasio ekuivalen 1.15 hingga rasio ekuivalen terbesar 1.68. Pada kisaran rasio ekuivalen tersebut tampak kecenderungan bahwa fraksi massa CO meningkat seiring dengan semakin besarnya CO₂ yang ditambahkan pada reaktan. Besar efek penambahan CO₂ tertinggi berada pada rasio ekuivalen 1.68 yang memiliki selisih fraksi massa CO terbesar pada rasio ekuivalen yang sama yakni 1.4%. Secara teoritis pada rasio ekuivalen 1, keseluruhan spesies CH₄ dan O₂ seharusnya dapat terbakar habis untuk menjadi spesies CO₂ dan H₂O. Akan tetapi kondisi temperatur hasil pembakaran yang cukup tinggi membuat sebagian spesies O₂ bereaksi membentuk NOx meskipun dalam jumlah yang relatif kecil seperti pada Gambar 7. Hal ini menyebabkan sisa dari spesies CH₄ sebagian kecil tidak terbakar sempurna sehingga menghasilkan 1% fraksi massa spesies CO.

Pada sisi pembakaran yang miskin bahan bakar, tidak terdapat spesies CO dikarenakan keseluruhan spesies CH₄ dapat terbakar habis pada kondisi oksidator yang melimpah. Pada sisi pembakaran campuran kaya bahan bakar, kurangnya ketersediaan spesies O₂ untuk dapat mengoksidasi bahan bakar secara keseluruhan menimbulkan spesies CO sebagai salah satu hasil dari pembakaran tidak sempurna. Penambahan CO₂ pada keseluruhan rasio ekuivalen berefek menaikkan jumlah pembentukan spesies CO. Pada pembakaran hidrokarbon spesies CO merupakan spesies perantara sebelum terbentuknya CO₂. Proses oksidasi spesies CO menjadi CO₂ berlangsung pada tahap akhir pembakaran. Pada kebanyakan kasus pembakaran, reaksi yang paling dominan untuk spesies CO menjadi CO₂ adalah ketiga reaksi berikut ini

 $CO + OH \leftrightarrow CO_2 + H$ $CO + O_2 \leftrightarrow CO_2 + O$

 $CO + O(+M) \leftrightarrow CO_2(+M)$

Gambar 10. Laju pelepasan kalor reaksi pembentuk CO pada rasio ekuivalen 1.68 di setiap titik koordinat z

Dari Gambar 10 dapat diamati bahwa pada ketiga reaksi yang diteliti terdapat penurunan laju pelepasan kalor di setiap penambahan CO₂. Laju pelepasan kalor tertinggi reaksi 12 bernilai - 52408 W/m³ tanpa penambahan CO₂ dan turun hingga -34525 W/m³ pada penambahan CO₂ 40%. Pada reaksi 31 laju pelepasan kalor tertinggi bernilai -2275 W/m³ tanpa penambahan CO₂ dan turun

hingga -1104 W/m³ pada penambahan CO₂ 40%. Sedangkan reaksi 99 memiliki laju pelepasan kalor tertinggi dengan nilai -4024993.6 W/m³ tanpa penambahan CO₂ dan turun hingga -1573279.7 W/m³ pada penambahan CO₂ 40%. Salah satu syarat untuk berlangsungnya reaksi CO + OH \leftrightarrow CO₂ + H adalah ketersediaan spesies OH. Spesies OH sebagian besar terbentuk melalui percabangan rantai reaksi sebelumnya yang secara praktikal tidak dapat bereaksi pada temperatur di bawah 1100 K. Sedangkan reaksi $CO + O_2 \leftrightarrow CO_2 + O$ dan CO + O (+M) $\leftrightarrow CO_2$ (+M) hanya dapat bereaksi pada temperatur di atas 1100 K. Selain itu pada kedua reaksi ini memerlukan ketersediaan O2 yang mencukupi untuk bereaksi. Sehingga pada kondisi kaya bahan bakar reaksi CO + O₂↔ $CO_2 + O$ dan CO + O (+M) \leftrightarrow CO_2 (+M) sulit untuk bereaksi. Dikarenakan oleh penurunan temperatur pada saat penambahan CO_2 maka ketersediaan OH untuk menopang reaksi $CO + OH \leftrightarrow CO_2$ + H akan semakin sedikit (McAllister S, 2011). Sehingga dengan semakin kecil kemungkinan ketiga reaksi ini berlangsung mengakibatkan kenaikan pada pembentukan fraksi massa spesies CO seiring dengan penambahan CO₂.

E. Kesimpulan

Pada setiap pembakaran bahan bakar hidrokarbon tidakah luput dari pembentukan gas buang yang berbahaya. Kandungan CO₂ yang cukup tinggi pada produksi biogas konvensional, turut berpengaruh pada pembentukan gas NOx dan CO yang bersifat berbahaya bagi kesehatan.

Mass fraction NOx terbentuk hanya pada campuran *lean-fuel* CH₄/CO₂/udara dan nilainya semakin turun seiring dengan meningkatnya CO₂ akibat turunnya nilai temperatur. Hal ini dikarenakan oleh terdapatya penurunan nilai *heat release rate* pada reaksi NO + N \leftrightarrow N₂ + O, reaksi N + O₂ \leftrightarrow NO + O, reaksi N + OH \leftrightarrow NO + H dan reaksi N + CO₂ \leftrightarrow NO + CO. Reaksi N + CO₂ \leftrightarrow NO + CO juga mengalami kenaikan namun nilainya tidak terlalu drastis jika dibandingkan dengan penurunan 5 reaksi lainnya. Pada kedua reaktan *mass fraction* CO maksimal berada pada kondisi campuran *rich-fuel* dan efek peningkatan kadar CO₂ mengakibatkan peningkatan nilai *mass fraction* CO. Terdapat penurunan cukup signifikan pada reaksi-reaksi yang mengubah spesies CO untuk

menjadi CO₂ pada setiap peningkatan persentase CO₂ di *equivalence ratio* yang sama. Reaksi-reaksi tersebut antara lain reaksi CO + O (+M) \leftrightarrow CO₂ (+M), reaksi CO + O₂ \leftrightarrow CO₂ + O dan reaksi CO + OH \leftrightarrow CO₂ + H.

F. Referensi

- Chaineaux, J., Marlair, G., Carson, D., Benaissa, W., Tribouilloy, B. 2011. Experimental Study of CH4/O2/CO2 Mixtures Flammability. Makalah dalam AIChE Spring Meeting 2011. Chicago, 2011.
- Cohe, Cecile., Chauveau, Christan., Gokalp, Iskender., Kurtulus, D.F. 2009. CO₂ addition and pressure effects on laminar and turbulent lean premixed CH₄ air flames. *Proceedings of Combustion Institute 32*. 1803-1810
- Developer, Cantera. 2012. *Phyton Module Documentation*. <u>http://cantera.org/docs/sphynx/html/index.html</u> (diakses Agustus 2016)

Felden, Anne.2015. CANTERA Tutorials. Cerfacs

Gascoin, Nicolas., Yang, Qingchun., Chetehouna, Khaled. 2016. Thermal effects of CO₂ on the NOx formation behavior in the CH₄ diffusion combustion system. *Applied Thermal Engineering* 110. 144-149

Glassman, Irvin., Yetter, R.A. 2008. Combustion. San Diego: Elsevier

- Goodwin, D.G. 2004. *Cantera C++ User's Guide*. Pasadena: California Institute of Technology
- Guo, H., Ju, Y., Maruta, K. 1998. Numerical investigation of CH4/CO2/air and CH4/CO2/O2 counterflow premixed flames with radiation reabsorption. *Combustion Science and Technology*. 135, pp. 49-64
- Janes, A. 2014. Experimental Study of CH₄/O₂/CO₂ Mixtures Flammability. Makalah dalam *AIChE Spring Meeting 2011*. Chicago, 2011.
- Jarosinski, Josef., Veyssiere, Bernard. 2009. *Combustion Phenomena*. New York: CRC Press
- Kee, Robert, J., Coltrin, Michael, E., Glarborg, Peter. 2003. *Chemically Reacting Flow.* New Jersey: Wiley

- Lapalme, D., Seers, Patrick. 2014. Influence of CO₂, CH₄, and initial temperature on H₂/CO laminar flame speed. *International Journal of Hydrogen Energy*. 3477-3486
- McAllister, Sara., Chen, Jyh-Yuan., Pello, Carlos, F. 2011. *Fundamentals of Combustion Process*. New York: Springer
- Sasongko, Mega, N. 2014. Pengaruh Prosentase CO₂ Terhadap Karakteristik Pembakaran Difusi Biogas. *Mekanika Volume* 12 *Nomor* 2
- Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner Jr., W.C., 1999. GRI 3.0 Mechanism. Gas Research Institute. <u>http://www.me.berkeley.edu/gri-mech/</u>(diakses Agustus 2016)
- Song, Yu., Zou, Chun., Yizhuo, He., Chuguagn, Zheng. 2015. The chemical mechanism of the effect of CO₂ on the temperature in methane oxy-fuel combustion. *International Journal of Heat and Mass Transfer 86*. 622-628
- Teodorita, A.S., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., Rainer, Janssen. 2008. *Biogas Handbook*. Esbjerg: University of Southern Denmark
- Tsuji, H. 1982. Counterflow Diffusion Flames, *Progress in Energy and Combustion Science*, Vol. 8, , p. 93-119.
- Wardana, ING. 2008. *Bahan Bakar dan Teknologi Pembakaran*. Malang: PT. Danar Wijaya Brawijaya University Press.
- Watanabe, Hirotatsu., Fumiya, Arai., Okazaki, Ken. 2013. Role of CO₂ in the CH₄ oxidation and H₂ formation during fuel-rich combustion in O₂/CO₂ environments. *Combustion and Flame* 160. 2375-2385
- Yu, J.F., Yu, R., Fan, X.Q., Christensen, M., Konnov, A.A., Bai, X.S. 2012. Onset of cellular flame instability in adiabatic CH₄/O₂/CO₂ and CH₄/air laminar premixed flames stabilized on a flat-flame burner. *Combustion and Flame 160*. 1276-1286

Hangga Wicaksono S.T., MT, menyelesaikan program Sarjana Teknik di Teknik Mesin, Universitas Brawijaya, pada tahun 2014, mendapatkan gelar Magister Teknik dari Teknik Mesin, Universitas Brawijaya pada tahun 2017. Mengajar di Jurusan Teknik Mesin, Politeknik Negeri Malang mulai tahun 2017. Minat pada bidang penelitian konversi energi, sistem kendali, dan manufakturing.